
.................pace _rgy
A B!TBUS

_ _,.£...,_ @=_fii._i_!:i_£1£i_ £-c'o,_- '

..............,g Application

D. Glover Nora

1989

NASA Technical Memorandum 4149

The Aerospace Energy Systems

Laboratory: A BITBUS

Networking Application

Richard D. Glover and Nora O'Neill-Rood

Ames Research Center

Dryden Flight Research Facility

Edwards, California

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1989

(Kbyte) magnetic bubble memory cassettes provide local

storage for program software and data.

As shown in figure 3 the AESL central system consists

of two desktop chassis housings plus a terminal and line

printer. The main chassis contains a Multibus I cardcage

plus peripherals consisting of a floppy drive, a tape drive,

and a magnetic bubble memory cassette interface. The

auxiliary chassis contains two 51-megabyte (Mbyte) hard
drives, one for software production files and the other for an

integrated database containing battery servicing configura-

the system over telephone lines to both monitor operations

and exercise control if necessary. This capability would be

used infrequently and the effect on bus loading is expected

to be negligible.

A final set of functional requiremems involves house-

keeping operations such as station polling, time synchro-

nization, and station bubble memory garbage collection.

Station polling must occur round-robin in such a way that
no station waits more than 1 sec for servicing. Based on ten

stations, the polling rate would be 10 Hz. Time synchroniza-

tion files and data records.

This report will discuss first how the requirements for the
AESL led to the Choice of BITBUS as LAN, and the con-

figuration of the hardware components required to imple-

ment iL Secondly, the report will describe the evolution of

a NASA-developed protocol used to satisfy the AESL com-
munications requirements. Finally, the report will outline

the software elements which comprise this protocol and will

give examples of typical BITBUS operations.

Requirements

The base line AESL physical requirements are for ten bat-

tery stations to be installed in a servicing area adjacent to

the operations room containing the central system. A daisy
chained serial bus was selected to minimize the amount of

wiring; for this reason a star configuration (either serial or

parallel) was not considered. The total bus length required

was 100 ft and a master-slave protocol was used to reduce
the cost of the station controllers as much as possible.

The AESL system functional requirement involving the

greatest amount of LAN traffic is the exchange of files be-
tween the central system integrated database and the bubble

memories in the battery stations. During battery servicing,

a battery station may ask for the download of a specifica-

tion file related to a particular battery so that it may prop-

erly configure _e controller for a servicing _nm. The cent
tral system, on the other hand, must periodically upload data

iec6rds_enerated during battery=se_icing so that they may
be-addS:to the database archiv_for access by interactive

jobs. These files are typically 250--55Obytes in length and

during periods of high activity may reach a rate of 50 file
transfers an hour.

A second functional requirement is the real-time mon-

itoring of battery station activity from an interactive job.

This involves passing blocks of status information from the

selected station to the job running in the central system.
The blocks run 500--600 bytes in length, but since they are

only generated on demand, the total traffic volume is relat-
ively small.

The third functional requirement is for command capabil-

ity to allow a battery technician to exercise remote control

over operations at a selected battery station. This need may

arise since the AESL is engineered to operate unattended, in-

cluding overnight and weekend operations. The AESL mul-

tiuser interface will allow authorized personnel to dial into

tion involves passing a 32-bit date-time quantity from the

central system to a station when requested (once a minute).

Ten stations would generate ten such request-response mes-

sage pairs a minute and constitutes perhaps 1 percent of

bus loading. Station bubble memory garbage collection in-

volves purging stale files after they have been uploaded to
the central system. Such purge operations would normally

be done by the system manager only during slack periods

and thus would not adversely affect bus loading.

Hardware Configuration

Early in the AESL design effort it was decided that a LAN
mechanized with BITBUS hardware and software compo-

nents would meet all of the requirements previously dis-

cussed, and would be highly cost effective as well. The
SBX344A module was chosen as the interfacing hard-

ware module since it is specifically designed to provide a

BITBUS gateway to any single_ard computer (S BC) hav-
ing a single board extension (SBX) connector. As shown in

figure 4, the SBC used in the AESL central system is the
286/12, while the SBC used in each of the ten battery sta-

tion controllers 03SC)]s_e86[35. Both board types have
SBX connectors, and an SBX344A module will be installed
on all 11 boards. The bus itself Will consist of two runs of

twisted shielded pair cable 100 ft in length, one pair for data
and the other for the clock.

The configuration of the 11 SBX344A modules varies

slightly depending on which SBC is hosL All modules must
be configured for 2.4-Mbit/sec synchronous operation and

have socket U14 configured to receive a D2764A erasable

programmable read-only memory (EPROM). The 286/12 is
the master node and will be located at one end of the BIT-

BUS. Its SBX344A module has been given decimal address

28 and is configured with terminating resistors on both the

clock and data pairs. The remaining SBX344A modules

will be configured for addresses one through ten, and will

not have terminating resistors installed. External terminat-

ing resistors are used at the end of the BITBUS farthest from
the master node.

The SBX344A module as received from the factory has
its 8044 microcontroller chip programmed with distributed

control microcontroller (iDCM)-44 release 2.0 firmware.

This firmware is a preconfigured version of the distributed

control executive (iDCX)-51 release 2.0 which provides a

single resident task 0 called the remote access and control

(RAC) task. This firmware provides all the commands nec-

_z

_=__-

it
k

7_
__--_

essary for operation of the AESL LAN, and therefore no

additional iDCX-51 software is required.

From the viewpoint of the iDCM-44 firmware, the
SBC board which hosts the SBX344A module is consid-

ered an "extension" which means the firmware communi-

cates with the SBC through its parallel port (the firmware

communicates with the BITBUS through its serial port).

disadvantages: (1) it is highly application specific and there-

fore inflexible and (2) it does not permit concurrent com-

munications with more than one central system job. For

these reasons, a new approach was considered necessary
even though the protocol functioned well and provided valu-

able experience in the uploading and downloading of large

segments of data using BITBUS message packets.

Most communications are from the master node's exten= Thes_gnd phase of protocol development took the ap-

sion (the SBC286/12) to one of the slave node extensions
(an SBC86/35). However, an extension can communicate

with its own node using address 0FFH or with a remote

node (rather than the remote node's extension) by setting the

destination extension bit to 0 in the message header. When

communication with a particular slave node's extension is

proach of siructuring all bus traffic around the management
of real-time multitasking executive (iRMX) objects in the

slave extensions. The central system could create and delete

mailboxes, could send and receive message segments at any

desired mailbox, and could perform four operations on seg-

ments: create, delete, upload, and download. Application-
brbl_6n, _e--296/i2 ic0mm_i_s_i_-ih_i_-sI_e-fi-o_d__ as_is of CommUnicati0ns under this protocol are

rectly (RAC command RESET.STATION) and with its own

node to declare the slave node inactive (RAC command OF-

FLINE). The SBC86/35 board at a slave node communicates

with its own node during initialization in order to read its ad-

dress jumpers (using RAC command READAO at address
0FFH) to identify its own particular station number.

The iDCM-44 firmware provides a default BITBUS mes-

sage length of 20 bytes. Since each message has a 7-byte

header, this leaves 13 bytes (or 65 percen0 of the mes-

sage available for data. When BITBUS was first consid-
ered for the AESL, it was decided that a longer message was

mandatory to improve the LAN performance when passing

large blocks of data. Fortunately, the release 2.0 version

of the iDCM-44 firmware has a feature (shown in fig. 5)
called an initial data descriptor (IDD) which is invoked at

SBX344A power-up. An IDD permits changing the default

values for clock period, clock priority, and message length
(RQSYSBUFSIZE), and also permits reserving a portion

of memory so that it cannot be used to buffer messages.

The firmware checks address i000H to see if either pro-

grammable read-only memory (PROM) or random access

memory (RAM) has been installed in socket U14. If it finds

the check pattern 0AA55H, it chains any initial data (and
task) descriptors into the initialization sequence.

All AESL SBX344A modules have a D2764A EPROM

installed in socket U 14 which contains the IDD shown in fig-
ure 5. The total available memory for iDCM-44 release 2.0

is 108 bytes. On the advice of Intel Corporation this IDD

was sa'uctured to redefine the message length to 54 bytes,

thus allowing two messages to be buffered. This change has

lowered the message overhead from 35 percent to 13 per-

cent and has improved bus bandwidth considerably. The

hidden within the segments being exchanged and concurrent

processing is assured by each job having its own set of ob-

jects. Figure 7 shows the steps involved in a master-slave

exchange under this protocol. The weakness of this proto-

col is that the master must either have a priori knowledge of
the proper destination mailbox when initiating an exchange,

or there must be agreed-upon conventions (such as use of

null tokens) for accessing specific mailboxes created by
the slave.

The final phase of protocol development began with the
ground rule that each slave would create two mailboxes

which could be accessed by the master using certain des-

tination task identifiers in the message header. One would
be called the command mailbox, to which jobs in the master

would send command segments (forcing some sort of ac-

tion by the slave). The other would be known as the request

mailbox, which the master would periodically poll to see
if a requestor task within the slave had sent a request seg-

ment (asking the master to take some action). This protocol,

shown in figure 8, eliminates the need for the master to cre-

ate and delete mailboxes, but essentially retains the other six

operations of the purely iRMX object based approach previ-

ously mentioned. For both approaches, concurrent process-

ing ends after the command segment is sent to the command
mailbox if there is only one task performing command ser-

vicing. Similarly, slave requestor tasks must wait in turn ff

there is only one request servicing task doing the polling in
the master.

Battery Station Software Modules

The AESL battery stations employ SBC86/35 boards run-
ning a partial RMX I release 7 configuration consisting of

clock period and priority _e !eft unchanged and no memory --- nuclei, basic inPU_t/output syste m (BITS), and a single user
is reserved, job as shown in figure 9. No device drivers are needed

Bus Protocol Evolution

In the early stages of AESL software development

(Glover, 1988b), the protocol shown in figure 6 was tested

extensively. The destination task field of the BITBUS mes-

sage header was used to specify 1 of 16 possible functions to

be performed within the BSC. This protocol has two major

for either the SBX344A or the Linear Systems Ltd. clock-

calendar module (LSBX) since only a single task within the

user job interfaces to either device.

The tasks involved with BITBUS operations are shown
in figure 9 and of those, only the BITBUS task is applica-

tion independent. The BITBUS task creates the command

mailboxandtherequest mailbox. The command servic-
ing task waits for command message segments posted by

the BITBUS task and if closed loop, generates a reply mes-

sage. There are two requestor tasks in the AESL applica-

tion which can send request segments to the request mail-

box: one which occasionally requests files to be downloaded

from the central system, and another which once a minute

requests a date-time download for clock synchronization.
This automatic synchronization is an important feature of

any distributed system because it permits a single master

clock to pass along all time changes to the slaves, as well

as correcting normal drift. In the AESL, synchronization

is especially important because file names for data files are
generated from the date--time at the instant of the snapshot.

When the BITBUS task is created, the address jumpers
on the SBX344A board are read and that address becomes

the station number for that extension processor. Files sent

to the central system are tagged with this station number so
the source can be identified. The B1TBUS task is configured

as a polling task which checks the SBX344A module every
20 ms to determine if any messages have been received, and

if so, generates and sends immediate reply messages. If no

traffic is received for 10 sec, a flag is set which inhibits re-

questor tasks from sending requests to the request mailbox.

Central System Software Modules

The AESL central system is a 286/12 system 310 with

5 Mbytes of zero wait state RAM running a fully configured

iRMX 11.3 operating system. Multichannel communication

boards allow the coexistence of several interactive jobs us-
ing round-robin scheduling and 50-ms windows. As shown

in figure 10, there are two NASA developed device drivers
linked to the BItS and two I/O jobs created by the extended

UO (EIOS). The clock device driver and the clock I/O job

relate to a batterypowered clock-calendar module used for

master timekeeping, and are not involved with the BITBUS
LAN in any way.

The BITBUS device driver was designed to recognize all

BItS functions except FSREAD, F$WRITE, and F$SEEK.
The function F$ATVACH$DEV causes the SBX344A mod-

ule to be reset, while F$DETACH$DEV, F$OPEN, and

F$CLOSE simply return E$OK. The function F$SPECIAL

accepts only a subfunction code of 8001H and interprets it
to mean a BITBUS message transaction where the auxiliary

pointer points to the BITBUS message to be sent:

declare bitbus$msg structure (
link word,

length byte,

flags byte,

node byte,

task$ids byte,

cmd$resp byte,

dat (248) byte) ;

The BITBUS device driver would be invoked as follows:

call rqsspecial (bitbus$connection,
8001H,

@bitbus$msg,
nil,

@exception) ;

The response message is written on top of bitbus$msg so

it is imperative that the data field be long enough for the

longest possible response.

The pollingI/O job is a high priority job which first reads
the contents of the file :CONFIG:STATIONS and builds a

list of stations to be polled. Thereafter it iterates at 10 Hz,
polling the set of all stations thought to be active and for

each such scan polls one station from those thought to be

off-line. Each poll causes the status of the station to be up-

dated depending on whether or not a reply was received. If
a reply was received and a request for service was fetched,

the request is immediately processed and the response is
sent back.

Tl{einteractive jobs which involve sending commands to

a station are linked to a set of routines which provide inter-
leaving of bus traffic using RQSSPECIAL calls as previ-

ously shown. A standard interface to these r0utines has b_n

developed which employs a structure of the following form:

declare command$msg structure (

node byte,

function byte,
count word,

exception word,

actual word,

buffer$ptr pointer,
string$ptr pointer) ;

The top-level command routine is invoked as follows:

call command$io (@command$msg);

This routine is necessarily application-dependent but in
turn it is linked to a number of suppo_ng routines which are

solely protocol-dependent. For a given application, all inter-

active jobs would be bound to the same command routine

(and supporting routines) which would interpret the func-

tion code and perform the proper BITBUS I/O operation.

Bus Operations

As stated earlier, bus operations can be initiated at one

of two points: a central system job which commands a par-
ticular station to take some action, or a station task which

sends a request segment to its request mailbox. All test-

ing to date has been performed with a single station: the

4

i

!
|

i

7-

'!

engineering prototype battery bench (which was given ad-

dress 27). Stress tests have been performed where three

interactive jobs have simultaneously commanded the sta-
tion to upload a large status segment. Some slight delay is

noticed occasionally in the response time of the interactive

job's display, but these delays are generally less than 2 sec.

File transfers of 250 to 550 bytes have been tested exten-

sively and delays are generally 2 to 3 sec. A large part of

this delay is caused by the slow response time of the mag-
netic bubble cassettes in the BSC.

Figure 11 shows the elements involved in a typical closed-
loop command sequence. The circled numbers in figure 11

correspond to the following steps:

1. The interactive I/O job calls the command routine with
a function code involving closed-loop command,

2. A command segment is created and its token

is returned,

3. The command segment is filled using multiple down-

load transmissions,

4. The command segment is sent as a closed-loop com-

mand, a reply mailbox is created, and its token
is returned,

. The command routine inserts an appropriate time de-

lay for the reply segment to be generated and sent.
The command segment is deleted by the slave's

command servicing task after the reply segment has

been generated,

. The command routine begins to solicit the reply seg-

ment token and repeats until received. The reply mail-

box is deleted by the slave's BITBUS polling task

after the reply segment token has been successfully

picked up,

7. The reply segment is emptied using multiple upload
transmissions,

8. The reply segment is deleted,

9. The information is passed back to the interactive job.

To enhance the performance of the protocol, command

segments are downloaded and reply segments are uploaded
only if the information will not fit into the available free

space in the B1TBUS message. The amount of free space

in the message varies from 39 to 45 bytes depending on the

message type (fig. 8). When the information will fit into

this free space, the presence of immediate data is signalled

by the command or reply segment token being set equal to
the value selector$of(niI). Thus whenever a message is re-

ceived which involves a segment, the token must be checked

and immediate data used when appropriate. In the case

of command information, the slave's BITBUS polling task

will create the command segment when necessary to receive

the immediate data. In the case of reply information, the

BITBUS polling task will send the information back as im-
mediate data whenever possible and delete the reply seg-

ment. Otherwise, the recipient is responsible for deleting

the reply segment after it has been uploaded.

Figure 12 shows the logic employed in the polling I/O

job. As described earlier, the job fetches the file :CON-

FIG:STATIONS during initialization and builds a polling

list. It also creates a status array which indicates whether

a station is believed to be "asleep" or "awake", and initial-
izes it to all asleep. All awake stations (if any) are polled

once and then the next station from those classified asleep is

polled. One station is polled every I00 ms and its status is

updated; this polling rate is a compromise between servicing

delay and central system processor loading. If a reply was
received and a request for service was fetched, the request

is immediately processed and the response is sent back. For

a STATIONS file consisting of

1,2,3,4,5,6,7,8,9,10,27

the polling rate for the single active station 27 is approxi-

mately 85 times a minute. This rate could be expected to
drop to 60 a minute with ten stations active.

Concluding Remarks

In late 1990 the NASA Ames-Dryden AESL will become

operational as a semi-automated facility for the servicing of
aircraft batteries. This facility will be a distributed Multi-.

bus I system with a central system running iRMX II and ten
operator positions running iRMX I linked by a BITBUS net-

work. A prototype network, consisting of the master node

and a single slave node, is now operational and has proven

highly reliable at 2.4 Mbit/sec over 100 ft of bus. The BIT-
BUS message length has been increased to 54 bytes by tak-

ing advantage of the IDD feature in the latest release of the

BITBUS DCX. A NASA developed protocol permits a mix

of interactive and I/O jobs executing within the central sys-
tem to communicate concurrently with any of the servicing

positions. This protocol makes possible BITBUS applica-

tions beyond distributed control to intersystem networking,

including file transfers and other communications involving

large segments of data.

References

Glover, Richard D., "Aerospace Energy Systems Labora-

tory: Requirements and Design Approach," proceedings

of 34th International Instrumentation Symposium, Albu-

querque, NM, pp. 359-363, May 2-6, 1988.

Glover, Richard D., and O'Neill-Rood, Nora, "The

Aerospace Energy Systems Laboratory: Hardware and

Software Implementation," proceedings of the Fifth In-

ternational iRMX User's Group Conference, Schaum-

burg, IL, pp. 219-237, Nov. 14-15, 1988.

T

I Battery I

s'_°nI

Central system I

I

I
.a.er_l
stunI

Local area
network

Figure 1. AESL overview.

9274

....... Power control

subsystem

(rear)

|
Battery

L

7¢

= _-

S

÷

Figure 2. Battery station bench.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH "

ORtGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

Figure 3. Central system console.

2.4 Mbits/sec BITBUS

Address28 [

SBX-344A
iDCX-51 R2.0

SBC 286/12
RMX-II

Central system
master node

Addresses1_10T f

SBX-344A l!

IDCX-51 R2.0

SBC 86/35
RMX-I

Battery station
(one of ten)
slave nodes

Figure 4. BITBUS hardware configuration.

9276

i

Address

1000H

1002H

1004H

1006H

1007H

1008H

1009H

Contents

DW 0AA55H

DW 0

DW 0

DB 0

DB 54

DB 0

DW 0

Description

; check pattern

; block type (IDD)

; RQCLOCKTICK (no change)

; RQCLOCKPRIORITY (no change)

; RQSYSBUFSIZE (new value)

; reserved memory (none)

; next block (none)

Figure 5. Initial data descriptor.

Real-time

status Delete Create

/ file _ _'--directory

Write _ ,<Read Writel Y Data f '

[s::ta/s I,CMDI _ Upd°ilid I_Download 2Bl_f_res _Read mbUbbol_ J

_ data _,, U]_"lpload Download] File _ Write_ Program J

I t/ co,l_,_ Delete_ Create

Semaphore S)a.el °u._tmg:_;iet e __._.:_e_Re_lng 1 directory

= Create

I d,rectory J 02.

Figure 6. Initial protocol design.

i

1i

i Creates.gmentI

I Download Into segment I

....

Create reply mailbox J

I

I Send segment to proper I
destination and specify

reply mailbox

!
Walt at reply mailbox I

i

for response segment I
I

[Upload response segmentJ

I
i Delete response segment I

I
I Delete reply mailbox I

9289

Figure 7. iRMX object based protocol.

=

q_

Task

1

2

Function

Issue open-loop command

Issue closed-loop command

Retrieve closed-loop command reply

Send to slave extension

commands segment $t oken

immediate Sdata (45)byte*

commands segment $t oken

immediateSdata (45)byte*

replySmailboxStoken

Check service request mailbox - nothing -

5 Deliver service response

6 Create segment

serviceSmailboxStoken

serviceSsegmentStoken

immediateSdata(43)byte*

segmentSsize

7 DeMte segment segmentStoken

8 Uploadfrom segment offset

segmentStoken

[command$response=#]

9 Download inm segment offset

segment$token

data$bytes(#)byte

[command$response=#]

*Ifimme_atedam appended, segment$token = selector$of(nil)

Figure 8. Final protocol design.

Receive_om slaveextension

status

status

replySmailboxStoken

status

replySsegment$token

replySsegmentSsize

immediateSdata(41)byte*

status

request$segment$token

request$segment$size

service$mailboxStoken

immediate$data(39)byte*

status

status

segment$token

status

status

dataSbytes(#)byte

status

I Root Job I

I

Protocol
manager task (I BITBUS

task

I

I

I

t'I

----I

Application speclflc
command task (!Command t

servicing --J
task

Application specific
requestor tasks "

I Supervisor t_ utask

I LSBX t-task

I

I

Figure 9. Battery station software.

929O

!

r-:t BasIcIlobl/O

I

I

:/B'TBUSI
P'I device I
/ driver I

| Clock I
'--I device I
/ driverI

I Root JobJ

I

I Extended IVo°l
t Polllng I

I/o I
Job J

I
Job I

i :

I-=1Interface
Job

.1InteractIve IJob 1 I
I

I

I

I

._ InteractiveJob n I

_91

Figure 10. Central system software.

ill

i

|

=

=
ii

w

F

=

i

10

Application
specific

command
routine

Master extension

Library
routines

A

Create

()- [segment

._ Download

I
I
I

BITBUS
messages

I
Multiple]

,ssue I_ !
@ c,o,ed-

loop I- (4") I
command I v I

I
Retrieve Task = 3._I

command --_ _
reply (_ I

Multiple I
task = 8 :

Delete Task = 71

segment _

BITBUS
20MS
polling

task

Slave extension

Temporary RMX objects

Create (____ __Receive_..

Fill .(_.._J Command L -_. Emp y .).
_en#D m -6;iet;
.... _@_ .,gm_., _

reate __.._ Reply L ._Recelve._

;end "_M mailbox]<_-Send;i;i;-___l

bRecelve@l _(_Create

FE_-_ Reply t"(-(_'Send
_ __(__ segment

Figure 11. Typical closed-loop command sequence.

Application
specific

command
servicing

task

9292

11

Poll next J Allawak Ilasleep I Poll next I

--'n°""-t t-'''''°n°"''
| Some awake |

/ 's°me asleep /

-,<_-
' _

J Declare I

node awake I

Y
N _l Declare I

r I node asleepJ

J Process JY _ request

ISendI
reaponsej

-p
1_,.°1100 MS

Figure 12. Polling I/O job.

g293

II

_--__

w

12

Report Documentation Page
Nalo_ Aee_naulcsand
S_ce _m._sltalo_

1. Report No.

NASA TM-4149

2. Government Accession No.

4. Title and Subtitle

The Aerospace Energy Systems Laboratory:

A BITBUS Networking Application

7. Author(s)

Richard D. Glover and Nora O'Neill-Rood

9. Performing Organization Name and Addrenm

NASA Ames Research Center

Dryden Flight Research Facility
P.O. Box 273, Edwards, CA 93523-5000

12. Sponsoring Agency Name and Addreu

National Aeronautics and Space Administration

Washington, DC 20546

3. Reciplent's Catalog No.

5. Report Data

November 1989

6. Performing Organization Code

8. Performing Organization Report No.

H-1569

10. Work Unit No.

R-TOP 992-23-05

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared as conference paper for presentation at iRUG 6th International Conference, Bethesda, Maryland,
November 13-14, 1989.

16. Abstract

The NASA Ames-Dryden Flight Research Facility has developed a computerized aircraft battery servic-

ing facility called the Aerospace Energy Systems Laboratory (AESL). This system employs distributed

processing with communications provided by a 2.4-megabit BITBUS local area network (LAN). Cus-

tomized handlers provide real-time status, remote command, and file transfer protocols between a central

system running the iRMX-II operating system and ten slave stations running the iRMX-I operating sys-

tem. This paper describes the hardware configuration and software components required to implement this

BITBUS application.

17. Kay Words (Suggested by Author(s))

BITBUS; Distributed processing; iRMX;
Master-slave; Multibus; Multiuser

18. Distribution Statement

Unclassified -- Unlimited

19. Security Claesif, (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

Subject category 62

21. No. of pages 22. Price

15 A02

NASA FORM 1626 OCT 86

*For sale by the National Technical Information Service, Springfield, VA 22161-2171.
NASA-Langley, lg8g

}

r

i

